数学家提出了一种简化物质通过细胞壁转移的数学模型的方法
RUDN大学的一位数学家提出了一种使用椭圆算子的分数次幂对方程进行数值求解的新方案。新方案比现有方案工作得更快,因为它考虑了此类方程在奇点处解的性质。该结果对于计算扩散过程可能有用,例如,多孔介质中的流体泄漏,营养物质通过细胞壁的转移以及弹性材料的破裂。该研究发表在《计算机与数学及其应用》上。
经典扩散 方程是偏微分方程。它描述了物质在特定环境中的分布过程。该方程的解是时间t和点x的函数,它表示在时间t点x处物质的浓度u(t,x)。如果介质是均质的,则扩散方程包含关于u的t的一阶导数和关于坐标的u的二阶导数之和。该和称为拉普拉斯算子,并且在数学和物理学的各个领域中使用,包括复函数理论和Schrödinger方程。
RUDN大学应用数学计算方法科学中心的数学家Petr Vabishchevich和他的同事Raimondas Ciegis,立陶宛维尔纽斯维尔纽斯·吉迪米纳斯技术大学数学教授,认为分数扩散方程的一种变体是拉普拉斯算子被带到分数阶。程度由公式确定,从理论上讲很方便,但完全不适合计算。同时,与解决方案相关的实用计算是应用程序中的重要任务。
如果很难以一般形式求解方程,则数学家会使用数值方法。有几种传统上用于分数扩散方程。例如,其中之一假设解决方案简化为几种称为本地系统的顺序解决方案。这些系统具有椭圆性,即这些方程类似于无分数阶的扩散方程。这样的系统在数值上很好地解决了。但是,当需要从获得的解决方案中“整体”解决原始问题的近似解决方案时,这些部分就无法始终“很好地”配合在一起-获得的解决方案有时会准确地近似于原始问题的解决方案,有时它差别很大。
Petr Vabishchevich和他的同事选择了另一种方法,将分数阶扩散方程的解简化为多个局部系统。从某种意义上讲,所得的系统不具有椭圆性,甚至更差。而且,该系统包括具有不连续性的功能,这通常意味着对于数值问题的可解决性较低。但是在这种特殊情况下,事实证明,对计算时间步的正确选择以及对系统本身的良好选择,都可以使数值解非常精确地近似于原始问题。
而且,似乎RUDN大学数学家提出的方法通常比同等方法更快。这是因为向新解决方案的过渡发生在新方案的最后一步。在其他方法中,逼近过程分为多个阶段,这导致了计算误差的累积。新方法不会发生这种情况。
分数扩散方程式描述了所谓的异常扩散,例如,液体在具有不连续性的多孔介质中的分布。另外,分数扩散通常描述了营养素在细胞内和组织中的转移。这些一般形式的方程是不可解的,因此,科学家使用数值逼近,即近似解。RUDN大学的数学家的新方法将使许多情况下的计算速度更快。
免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!
-
【酿葡萄酒方法】酿造葡萄酒是一项既传统又富有乐趣的活动,无论是家庭自制还是小规模生产,掌握基本的酿造流...浏览全文>>
-
【酿葡萄酒的方法步骤】酿制葡萄酒是一项既有趣又富有挑战性的活动,适合家庭爱好者尝试。虽然市面上有现成的...浏览全文>>
-
【酿葡萄酒的方法】酿制葡萄酒是一项古老而有趣的工艺,结合了自然发酵与传统技艺。无论是家庭自制还是商业生...浏览全文>>
-
【酿酿跄跄打一生肖】“酿酿跄跄”这个词语听起来有些奇特,似乎并不是常见的成语或俗语。但结合“打一生肖”...浏览全文>>
-
【碾子山哪里好玩】如果你正在计划一次旅行,想要了解“碾子山哪里好玩”,那么这篇内容将为你提供一份实用的...浏览全文>>
-
【捻子酒的制作方法】捻子酒是一种传统的地方酒类,主要流行于中国南方部分地区,尤其是广西、广东等地。其原...浏览全文>>
-
【年糕做法年糕是怎么制作的】年糕是中国传统美食之一,尤其在春节期间更是家家户户必备的食品。它不仅寓意着...浏览全文>>
-
【年糕煮多久能熟的解析】年糕是许多地方的传统食品,尤其在春节等节日中非常受欢迎。但很多人在煮年糕时,常...浏览全文>>
-
【男的项链带什么样的比较好】在选择男士项链时,不仅要考虑个人风格和气质,还要结合穿着场合、身材特点以及...浏览全文>>
-
【男宝宝取名字个性的】为男宝宝取一个个性十足的名字,是许多家长在孩子出生前就非常重视的一件事。一个独特...浏览全文>>